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Abstract

The onset of longitudinal vortex rolls in the thermal entrance region of plane Poiseuille flow heated from below with a constant heat
flux is investigated theoretically. In the present study, the Boussinesq equations are solved numerically by using the finite volume method
to analyze the onset of secondary flow. The local growth rates of the mean temperature and its fluctuations are examined, and the three
characteristic distances, which are those to exhibit the onset of intrinsic instability, the detection of secondary flow, and the minimum
Nusselt number under mixed convection, are suggested. They are discussed in comparison with available experimental data for water and
air.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When a fluid layer between two horizontal plates is
heated rapidly from below, natural convection sets in due
to the buoyancy force. This buoyancy-driven convection
can occur in a number of heat transfer systems where the
primary flow of laminar forced convection exists, such as
liquid film processes, flows in heat exchangers and chemical
vapor deposition. Since most of these processes involve
nonlinear developing temperature profiles, it is important
to predict where secondary flow sets in.

For the linear temperature system of plane Poiseuille
flow, Gage and Reid [1] showed that except very slow flow
the stability criteria are the same as those of Rayleigh–
Bénard convection. In the thermal entrance region of plane
Poiseuille flow heated isothermally from below, Hwang
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and Cheng [2] first conducted stability analysis. Predictions
of Lee and Hwang [3] and Kim et al. [4] agree well with the
experimental results of Hwang and Liu [5], Kamotani and
Ostrach [6] and Kamotani et al. [7]. But all the above mod-
els need a further justification.

For the specific case of the thermal entrance region of
plane Poiseuille flow heated with a constant heat flux, Incr-
opera and his colleagues [8–14] investigated the onset of
secondary flow numerically and experimentally for water
and air systems. They determined the related characteristic
distances by flow visualization and heat transfer measure-
ment. Ozsunar et al. [15,16] also conducted numerical
and experimental analyses for the mixed convection in a
horizontal and inclined channel. They measured only the
heat transfer enhancement and investigated the effects of
aspect ratio and channel inclination. As shown in the
experiments of Maughan and Incropera [14] for air flow,
there is a difference between the characteristic distances
obtained by flow visualization and heat transfer mea-
surement. The onset of instability would not be detected
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Fig. 1. Basic state of laminar forced convection.

Nomenclature

a dimensionless horizontal wavenumber
A,B amplitudes of temperature and velocity fluctua-

tions
E1 energy functional of fluctuations
FB buoyancy force
g gravitational acceleration constant [m s�2]
H thickness of the fluid layer [m]
k thermal conductivity [W m�1 K�1]
L width of the cross-section [m]
Nu Nusselt number, qwH/{kTw � Ti}
p dimensionless pressure, PH2/(qia

2)
P dynamic pressure [N m�2]
Pe Péclet number, UavH/a
Pr Prandtl number, m/a
qw heat flux at the bottom wall [W m�2]
Raq Rayleigh number based on the heat flux,

gbqwH4/(kam)
r0 local growth rate of mean quantities
r1 local growth rate of fluctuations
Re Reynolds number, UavH/m
S vertical area at each x [m2]
T temperature [K]
u0 dimensionless basic velocity
U velocity vector, îU þ ĵV þ k̂W
Uav average velocity [m s�1]
v dimensionless velocity vector, ĵvþ k̂w
v,w dimensionless spanwise and vertical velocities,

(V,W)H/a
V,W spanwise and vertical velocities [m s�1]

x dimensionless axial distance, X/(PeH)
X streamwise distance [m]
y,z dimensionless coordinates, (Y,Z)/H
Y,Z spanwise and vertical distances [m]

Greek symbols

a thermal diffusivity [m2 s�1]
b volumetric thermal expansion coefficient [K�1]
DT thermal penetration depth [m]
l viscosity [kg m�1 s�1]
m kinematic viscosity [m2 s�1]
h dimensionless temperature, k(T � Ti)/(qwH)
q fluid density [kg m�3]

Subscripts

* normalized quantity
c critical state
D detection
i inlet or initial state
m maximum
rms root-mean-square quantity
T temperature
u undershoot
V velocity
w bottom wall

Superscript
0 fluctuation
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experimentally. Recently Kim et al. [17] employed the
propagation theory and analyzed the convective instability
problem for the present system. Their resulting critical dis-
tances constitute low bounds of scattered experimental
data. This intimates that the growth of instability is needed
for the manifestation of thermal convection.

In the present study, to examine the local behavior of
convective instability, the three characteristic distances
are suggested. They are the onset distance of convective
instability, i.e., intrinsic instability, Xc, the detection dis-
tance of secondary flow, XD, and the undershoot distance
in the plot of Nusselt number vs. distance, Xu, where the
minimum Nusselt number is exhibited. The critical dis-
tances illustrated by Kim et al. [17] describe the onset of
convective instability to a certain degree. But their analyses
based on the local stability analysis and propagation theory
require a further justification. In addition, they did not
show the local behaviors of thermal instabilities and the
manifestation of mixed convection. Accordingly, in the
present study, we will employ the finite volume method
(FVM) and identify the above characteristic distances in
comparison with the available experimental data of water
and air.
2. Onset of vortex instabilities

2.1. Governing equations

The system considered here is the plane Poiseuille flow
of a Newtonian fluid as shown in Fig. 1. The bottom plate
is heated with a constant heat flux qw, and the top plate is
kept at a constant inlet temperature Ti. Here, the channel
height is H, and the fluid flow has the fully-developed
velocity profile. For a high qw, in the thermal entrance
region of laminar forced convection, the nonlinear develop-
ing temperature profiles are formed and the buoyancy-
driven convection sets in at a certain distance in form of
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regular longitudinal vortex rolls. The governing equations
of the flow and temperature fields for the steady-state flow
are expressed as follows:

r �U ¼ 0; ð1Þ
qiU � rU ¼ �rP þ lr2Uþ qgk̂; ð2Þ
U � rT ¼ ar2T ; ð3Þ

where U, P, T, q, l, g and a denote, respectively, the veloc-
ity vector, the dynamic pressure, the temperature, the den-
sity, the viscosity, the gravitational acceleration constant,
and the thermal diffusivity. Here, k̂ represents the vertical
unit vector and qi is the density at T = Ti.

For a large Péclet number Pe(=UavH/a), the convective
heat transfer dominates the conduction one in the stream-
wise direction. Here Uav is the average streamwise velocity
and it is known that for large Pe longitudinal vortex rolls
are observed experimentally [18,19]. When regular vortex
rolls set in, the above three-dimensional (3D) governing
equations are changed to the two-dimensional (2D) ones
[17]. The latter ones are usually assumed near the onset
of mixed convection for Pe > 100. The resulting dimension-
less 2D governing equations are obtained with the
Boussinesq approximation under the no-slip boundary
conditions and the isothermal upper boundary:

r � v ¼ 0; ð4Þ

u0

ov

ox
þ v � rv ¼ �rp þ Prr2vþ PrRaqhk̂; ð5Þ

u0

oh
ox
þ v � rh ¼ r2h; ð6Þ

with the boundary conditions,

v ¼ w ¼ dw
dz
¼ 0;

oh
oz
¼ �1 at z ¼ 0; ð7aÞ

v ¼ w ¼ ow
oz
¼ 0; h ¼ 0 at z ¼ 1; ð7bÞ

where x = X/(PeH), p = PH2/(qia
2), and h = k(T � Ti)/

(qwH). Here vð¼ ĵvþ k̂wÞ denotes the dimensionless veloc-

ity vector, where ĵ is the horizontal unit vector. The dimen-
sionless axial velocity based on Uav, u0, is expressed as the
fully developed form of plane Poiseuille flow, i.e., u0 =
6(z � z2), and the spanwise and vertical velocities, v and
w, have the scale of a/H. The dimensionless Cartesian coor-
dinates (y,z) have that of H, and the vector differential
operator is denoted by rð¼ ĵo=oy þ k̂o=ozÞ. The important
parameters describing the present system, the Prandtl num-
ber Pr and the Rayleigh number Raq, are defined as

Pr ¼ m
a
; Raq ¼

gbqwH 4

kam
; ð8Þ

where m, b and k represent the kinematic viscosity, the ther-
mal expansion coefficient, and the thermal conductivity,
respectively.
In the present system, at the fully developed state, mixed
convection exists for Raq P 1296. But in the thermal
entrance region with Raq� 1296, the stability problem is
complicated. The critical conditions of the incipient ther-
mal instability in form of regular longitudinal vortex rolls
were analyzed by the propagation theory [17], which is
based on the assumption that incipient temperature distur-
bances are propagated mainly within the thermal bound-
ary-layer thickness DT at the onset distance of rolls.
Therefore, all the variables and parameters having length
scale are rescaled with DT. The self-similar transformation
is forced and the stability criteria are obtained easily. But
the results obtained by this theory are approximate ones
and they do not provide the detection distance of rolls.
Accordingly, we will employ the numerical method.

2.2. Mean fields and fluctuations

The velocity and temperature fields are divided into the
mean quantities and their fluctuations as follows:

v ¼ hvi þ v0; ð9Þ
h ¼ hhi þ h0; ð10Þ

where h Æ i and 0 represent the mean quantities in the y-direc-
tion and their fluctuations, respectively. The mean quantity
is a function of x and z, and it is known that hvi = 0 for
regular even rolls.

In the present study the Nusselt number is defined as
follows:

Nu ¼ 1

L

Z
L

qwH
kðT w � T iÞ

� �
Z¼0

dY ; ð11Þ

where Y is the spanwise distance of the channel and L is the
width of the cross-section. With secondary flow, Nu devi-
ates from that of laminar forced convection and shows
the minimum at x = xu. The undershoot distance xu is fre-
quently used as the characteristic distance to identify the
manifestation of secondary flow.

2.3. Local behavior of convective instability

In the present system secondary flow sets in due to the
buoyancy force and its magnitude FB is represented by

F B ¼ qigbjT � T ij; F B ¼ F B;0 þ F B;1; ð12a; bÞ
which are produced by temperature variations. Based on
the dimensionless mean temperature and its fluctuations,
the above buoyancy forces are written as

ðF B;0; F B;1Þ ¼ hhi; h0ð ÞqigbqwH=k. ð13Þ

In order to examine the local behavior of mixed convection
along the streamwise distance x, the following local growth
rates are defined:

r0;T ¼
1

hhirms

dhhirms

dx
; ð14Þ
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Fig. 2. Convergence test of temperature growth rates.
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r1;T ¼
1

h0rms

dh0rms

dx
; ð15Þ

where r0,T and r1,T are the local growth rates of the mean
temperature and the temperature fluctuations, respectively.
Here the subscript rms refers to the root-mean-square

quantity, i.e., ð�Þrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
R

Sð�Þ
2dSÞ=S

q
with dS = dydz,

where S represents the vertical area at each x. Similarly,
we define the local growth rate of velocity fluctuations as
follows:

r1;V ¼
1

v0rms

dv0rms

dx
; ð16Þ

where v0rms ¼ ½
R

Sðv02 þ w02ÞdS=S�1=2. The spanwise and verti-
cal velocities are generated by the work input of buoyancy
forces.

2.4. Intrinsic instability

For the present distance-dependent problem the selec-
tion of the inlet conditions is very important. We do not
know wherefrom disturbances exist and what kind of mode
they would show, if any. According to experimental obser-
vations fluctuations are assumed to show periodic patterns
as follows:

½h0; v0� ffi ½AðxÞh�ðzÞ;BðxÞv�ðzÞ� exp½iðayÞ� for 0 6 x 6 xc;

ð17Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

. Here A and B are the amplitudes and xc de-
notes the critical distance to mark the onset of instability.
The functions h* and v* represent the normalized tempera-
ture and velocity fluctuations, respectively. The inlet condi-
tions at x = 0 are constructed as h 0 = A(0)h*(z)cos(ay),
v 0 = �B(0)((ow*(z)/oz)/a)sin(ay) and w 0 = B(0)w*(z)cos(ay),
where A(0) and B(0) are the inlet amplitudes of fluctuations.
Here it is assumed that for 0 6 x 6 xc, h*(z) and w*(z) would
be formed somewhere by noises and the incipient patterns
would not change. This means that the unique disturbance
patterns are decided with the stability criteria.

The critical condition of the onset of intrinsic instability
is suggested:

r1;T ¼ r0;T with r1;V P 0 at x ¼ xc; ð18Þ
which means that the vortex instability of a = ac that satis-
fies Eq. (17) sets in at the smallest distance xc. It is stressed
that the condition of r1,V P 0 ensures the onset of instabil-
ities. For x < xc, fluctuations are so small in comparison
with the primary flow and they may be called noises. For
x > xc, buoyancy-driven instabilities can grow and they
are detected at some distance. Hereafter magnitude of fluc-
tuations is comparable to that of the primary flow. There-
fore, the system is assumed stable with r1,T < r0,T but
unstable with r1,T > r0,T. The above critical condition was
first suggested by Choi et al. [20] in the time-dependent
problem to analyze the onset of convective instabilty for
the Rayleigh–Bénard convection.
3. Numerical simulation

We solved the governing equations and the boundary
conditions (4)–(7) numerically using the FVM introduced
by Patankar [21]. In the present study, only a regular
longitudinal vortex roll with horizontal periodicity was
considered. Accordingly, one convection roll with the sym-
metric side-boundary conditions was used to describe the
horizontal infinite layer. The SIMPLE algorithm was used
to solve the pressure equation connected with the continu-
ity equation, and the hybrid scheme was employed to for-
mulate the convection–diffusion discretization equation.
In order to solve the present x-dependent problem, the
implicit method was adopted and the first order x-incre-
ment was used. Also, to ensure the numerical stability,
the distance step of Dx = 10�7 was used. In the present
x-dependent problem, the convergence was assumed when
the changes of the velocities and temperature were smaller
than 10�6 at each x-step.

For one vortex roll of Raq = 107 and Pr!1, the num-
ber of meshes in the z-direction was examined to ensure
numerical convergence: 20, 30, 40, 60 and 80. That in the
y-direction was fixed at 42. At this condition the thermal
boundary-layer thickness is very thin near x = xc. There-
fore, finer meshes were used near the top and bottom
boundaries to guarantee the physical validity. As shown
in Fig. 2, the simulated temperature growth rate converged
with the 60 z-meshes. Since the velocity one showed the
same trend, the number of the vertical meshes on the plane
was chosen as 42 · 60 in the present simulation. The above
mesh numbers and the Dx size yielded almost the same
temperature growth rate of the basic state, i.e., r0,T in lam-
inar forced convection for x 6 xc as the analytical one.

With the proper magnitude of the inlet temperature and
velocity amplitudes A(0) and B(0), the present system was
simulated numerically for a given Raq and Pr. The choice
of the proper A(0)-value will be discussed in comparison
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with the available experimental data. In the present study
of plane Poiseuille flow, the numerical simulations were
conducted for Pr = 0.7, 7 and Pr!1. As a result, the
xc- and xu-values for each case were obtained numerically.

In the present study, for the specific case of Pr = 7 and
Raq = 2.2 · 107, the 3D calculation was conducted by the
commercial numerical simulation package FLUENT,
which is also based on the FVM. The dimensional Eqs.
(1)–(3) were solved. As the inlet condition, the inlet profile
of the above 2D case was used. The 3D result agreed well
with the 2D one, Eqs. (4)–(6).

4. Results and discussion

The results of numerical simulation by the FVM are
reported here. The experimental data of Incropera and
his colleagues [10–14] for water and air are compared with
the present results. In the present study, only the onset of
the regular longitudinal vortex roll is considered. Com-
pared with the experimental data, the proper A(0)-values
are chosen with 0 < A(0) < 10�2 and, based on Eqs. (14)
and (15), the stability criteria satisfying the condition (18)
are assumed to represent the fastest growing regular vortex
instability, i.e., intrinsic instability.

4.1. The case of linear temperature

For the case of linear base temperature, the growing
behavior of fluctuations is illustrated in Fig. 3 with its
well-known critical conditions: Raq = 1296, ac = 2.55, and
r0,T = r1,T = r1,V = 0 as xc!1. These stability criteria
are independent of Pr and with these the fully-developed
fluctuation patterns are the same as those from the propa-
gation theory or local stability analysis. For a given Pr they
constitute the unique paths of r1,T and r1,V, as shown in the
figure. They represent the fastest growing mode of regular
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Fig. 3. Local growth rates for Raq = 1296.
longitudinal vortex rolls. Other patterns converge to these
unique paths when the conditions (17) and (18) are satisfied
iterating the calculations with the newly obtained patterns
at the fully developed state. The other a-values finally show
the decay of fluctuations with the negative r1,T - and r1,V -
values, which means that the corresponding system is
stable.

With decreasing Pr the growth rates of fluctuations
increase and approach zero downstream. For the case of
Pr = 0.01, the peculiar behavior of r1,T > 0 for 0.1 <
x 6 1 is observed before r0,T! 0. In the local stability
analysis, the condition of r1,T = 0 is forced as the critical
condition of thermal instability. According to this theory
there exist the two xc-values to satisfy the condition of
r1,T = 0 for Pr = 0.01: xc = 0.13 and 1. However, the for-
mer value is not the critical condition to mark incipient
instability because r1,T < r0,T and r1,V < 0. This violates
the criterion (18) and the corresponding system is stable.

4.2. The case of Pr!1

With Raq = 107, Pr!1 and A(0) = 10�4 the behavior
of fluctuations along the streamwise distance is illustrated
in Fig. 4. For small x, both w0rms and h0rms retain almost
the same magnitudes as their inlet ones but for 3 ·
10�4 < x < 10�3 they experience a sudden increase. The
local growth rates given by Eqs. (14)–(16) are illustrated
in Fig. 5. The instability criterion (18) yields xc = 2.5 ·
10�4 and ac = 15 for Raq = 107, as shown in this figure.
Here the r1,T- and r1,V-paths are the unique ones, which sat-
isfy Eq. (17). The r1,T-path is almost independent of the
inlet velocity condition for Pr!1. The maximum values
of r1,T and r1,V appear at x = xm,T and xm,V, respectively
and for x > xm,T, r0,T deviates from that of laminar forced
convection. If there is no secondary flow, the relation of
r0,T P 0 is kept. Since secondary flow occurs due to
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temperature variations in the present buoyancy-driven con-
vection, r1,T seems to play the critical role rather than r1,V.
In the amplification theory only the vertical velocity com-
ponent of disturbances is examined. In the present model,
the xc-value is independent of the A(0)-value but xm,T-
and xm,V -values are dependent upon its magnitude, as
shown in Fig. 5. Therefore, it is stated that the present
xc-value is the invariant and therefore, it is here called
the onset distance of intrinsic instability.

4.3. The case of Pr = 7

For water, the detection distance of mixed convection in
the plane Poiseuille flow heated from below was investi-
gated experimentally by Incropera and his colleagues [9–
12]. The two characteristic distances were determined by
both flow visualization and heat transfer measurement.
The former distance indicates the position at which the
dye injected ascends from the surface and the latter one
does the position at which the Nusselt number deviates
from that of laminar forced convection. The local behavior
of the Nusselt number along the axial distance for
Raq = 2.2 · 107 and Pr = 7 is shown in Fig. 6. The present
numerical simulation result with A(0) = 10�3 is comparable
with the experimental data. Also, the present 3D simula-
tion is similar to the 2D one. For Pr = 7, the local growth
rates of fluctuations (r1,T and r1,V) are more distinguishable
than those for Pr!1, as shown in Fig. 7. The present
results of Pr = 7 show that xu ffi xm,V. It is clear that man-
ifest buoyancy-driven convection should exist at x = xu.

For Pr = 7 the experimental data of Incropera and his
colleagues [10–12] are summarized in Fig. 8. The experi-
mental xu-values are located between the numerical ones
for A(0) = 10�3 and 10�4. With increasing Raq, the proper

A(0)-value seems to decrease from 10�3 to 10�4. The exper-
imental xD-values are located between xc and xu. Here it is
evident that xc < xD < xu and the ratio of xu to xc is nearly
constant, which is dependent upon the A(0)-value. The
Nusselt number starts to deviate from that of laminar
forced convection at x = xD, where secondary flow is also
observed by flow visualization. But its definitive value is
not clear. In the present numerical simulation for Pr = 7,
the relations of xu ffi 4xc and xu ffi 6xc, respectively, for
A(0) = 10�3 and 10�4 are shown. For Raq < 3 · 107 the
experimental xu-value shows the relation of xu ffi 4xc but
that of xu ffi 6xc is shown for Raq > 108. Therefore, it seems
that the A(0)-value are dependent on the Rayleigh number.

4.4. The case of Pr = 0.7

In the present study, the numerical simulation was con-
ducted for Pr = 0.7 and the results were compared with the
experimental data of Maughan and Incropera [13,14] for
airflow. They determined the detection distance of second-
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ary flow by flow visualization, observing the distance that
the smoke injected begins to coalesce into several plumes
on the bottom surface. For Raq = 4.2 · 105 and Pr = 0.7
the numerical result of the Nusselt number with A(0) =
10�4 is compared with the experimental data in Fig. 8.
The predictions agree well with experimental results until
they show an overshoot near x = 7 · 10�2. The local
growth rates are illustrated in Fig. 10. Figs. 9 and 10 show
that for Pr = 0.7, xm,V ffi xu as well as the case of Pr = 7.
The experimental data are compared with the present
numerical results for 4 · 104 < Raq < 107 in Fig. 11, which
shows that for airflow the detection distances by flow
visualization are smaller than those by heat transfer
measurement.

For Pr = 0.7, the proper A(0)-value seems to be 10�4 for
the entire range of Raq measured, 4 · 104 < Raq < 4 · 105.
It is expected that the proper A(0)-value is also dependent
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Fig. 9. Nusselt number vs. axial distance for Pr = 0.7.

Fig. 11. Comparison of predictions with experiments for Pr = 0.7.
on Pr. The experimental xD-values scatter more widely
than those of Pr = 7 and it is shown that xc < xD <
xu(ffixm,V). Here the relation of xu ffi 9xc is shown, which
means that the growth of thermal instability is delayed
for small Pr-value.

4.5. Discussion

The incipient instability may be very small and it will
grow until secondary flow will be detected at x = xD. In
connection with the growth period to the manifestation
of thermal convection in time-dependent Rayleigh–Bénard
problems, Foster [22] suggested the amplification factor to
exhibit manifest convection, which is the ratio of w0rms to its
initial value. But in the present system of Pr!1, his
amplification theory is invalid because the different inlet
velocity condition yields the different amplification factor.
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In the energy method which was introduced by Joseph [23],
the measure to represent the convective instability is based
on the energy functional of fluctuations, E1:

E1 ¼
1

2

Z
S

v02 þ w02 þ bPrRaqh
02� �

dS; ð19Þ

which is composed of both the kinetic and the potential en-
ergy induced by buoyancy forces. In this method, the prob-
lem is that the definitive b-value is not known. The energy
method usually yields a bound on the stability. It is known
that Eqs. (15) and (16) are based on the individual energy
quantities. It is noted that for Pr!1 only the tempera-
ture term remains in Eq. (19).

The numerical simulation based on Eqs. (17) and
(18) yields the onset distance of intrinsic instability.
For Raq > 104, Pe > 100 and 20 < Re < 5000, where
Re(=UavH/m) is the Reynolds number, the critical condi-
tions can be approximated by the following correlations:

xc ¼ 45Ra�3=4
q ; ac ¼ 0:27Ra1=4

q for Pr!1; ð20Þ

xc ¼ 56Ra�3=4
q ; ac ¼ 0:29Ra1=4

q for Pr ¼ 7; ð21Þ

xc ¼ 81Ra�3=4
q ; ac ¼ 0:30Ra1=4

q for Pr ¼ 0:7; ð22Þ

within the error bound of 10%. Here xc is not sensitive on a

near ac and also on Pr for Pr P 10 [17]. For Pr P 0.7 the
effect of Pr on ac is not so large. The constants of above
correlations are a little smaller than the results of Kim
et al. [17], based on the propagation theory. It is mentioned
that this theory yields a good approximation. For air
experiments of Re < 50 transverse rolls can set in [24] and
for small Pe,r in Eqs. (4)–(6) should be replaced with
the 3D operator. Therefore, the present simulation cannot
be applied to the case of extremely small Pr and Re.

We do not know whether the inlet conditions exist or
not. Thermal noises would set in somewhere downstream,
among which the fastest growing mode of longitudinal vor-
tex rolls will be formed following Eqs. (17) and (18). The
above results show that the growth period is required until
manifest mixed convection is detected. However, the exper-
imental detection of secondary flow is not easy and it
depends upon the respective experimental method to a cer-
tain degree. Therefore, the relation of xc < xD < xu ffi xm,V

is suggested here.

5. Conclusions

The critical distances to mark the onset of secondary flow
in the thermal entrance region of plane Poiseuille flow have
been investigated by using the FVM. For Pr = 0.7 and 7 the
characteristic distances xc, xm,V and xu have been examined
in comparison with available experimental data. In the
present system, it is suggested that the fastest growing mode
of regular vortex rolls sets in at x = xc with r1,T = r0,T. Here
xc is called the onset distance of intrinsic instability because
it is the invariant. It is independent of A(0)-value. The
manifestation of mixed convection is surely observed at
the undershoot distance xu, which is dependent upon the
A(0)-value. When the available experimental data of Pr =
7 are examined, the proper A(0)-value moves from 10�3

to 10�4 with increasing Raq. For Pr = 0.7, the value of
A(0) = 10�4 looks proper. The choice of A(0)-value requires
a further justification. The distance where secondary flow
can be first detected, xD, is located between xc and xu.
Therefore, the relation of xc < xD < xu ffi xm,V is suggested
and linear theory is applied to x < xm,V. The present numer-
ical simulation follows actual phenomena reasonably well
for xc 6 x < xu and it also clarifies the characteristic dis-
tances xc and xu to a certain degree in connection with reg-
ular longitudinal vortex rolls.
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